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Survival and residence times in disordered chains with bias
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We present a unified framework for first-passage time and residence time of random walks in finite one-
dimensional disordered biased systems. The derivation is based on the exact expansion of the backward master
equation in cumulants. The dependence on the initial condition, system size, and bias strength is explicitly
studied for models with weak and strong disorders. Application to thermally activated processes is also devel-
oped.
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I. INTRODUCTION

A large number of physical properties of diffusion an
hopping transport of classical particles~or excitations! in dis-
ordered media have been investigated by means of ran
walks ~RW! in disordered lattices@1–3#. Of particular inter-
est are the effects of the finite size and boundary conditi
on the domain of diffusion. The absorbing boundary a
proach allows us to analyze when a process first reach
given threshold value@4#. This question arises in many situ
ations and is equivalent to regarding the relation between
underlying dynamics of randomly evolving systems and
statistics of extreme events for such systems. These stat
are important in a variety of problems in engineering a
applied physics@5#. Extreme phenomena are experimenta
accessible and enable us to know the parameters of the
chastic dynamics.

One quantity that naturally arises in this context is t
time for which the particle survives before its absorption
the boundary sinks, i.e., the first-passage time~FPT!. This
time depends on the realization of the RW, thus being a r
dom variable. The mean first-passage time~MFPT! is of fun-
damental importance for diffusion influenced reactions, a
measures the~reciprocal! reaction rate constant. Firs
passage problems appear in a wide range of application@4#
and have a long history@6#. Recently, the fact that the MFP
is exactly equal to the inverse of the associated Kram
escape rate was proved for arbitrary time-homogeneous
chastic processes@7#. Finite size effects also appear when w
consider unrestricted diffusion~no boundary, or boundary
condition too far away!, however we ask for the time spen
by the diffusing particle in finite domains. This quantity
the random variable known as residence time~RT!. Unlike
the FPT, which reckons the lifetime of particles that nev
abandoned a given domain, the RT involves the case w
the particle can exit from and enter into the domain an
restricted number of times. We must stress that unfortuna
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the wordsresidenceandsurvival have sometimes been use
as synonyms. We distinguish these terms from the fact
the particle can return or not~absorption! to the interval of
interest. The mean residence time~MRT! has importance for
diffusion influenced catalytic reactions where reactants
localized in a finite domain of the catalyzer diffusion regio
Experimental techniques, generally called single-molec
spectroscopy, allow one to follow the evolution in time of th
state of a single molecule that undergoes a conformatio
change~isomerization reaction!. This fact has recently bee
addressed by the MRT study of a single sojourn in each
the states of the molecule@8#. The important feature of this
class of reactions is that these can be regarded as being
dimensional. The MRT has found several other applicatio
@9,10#. However, the general problem of RT distribution
random media has been little discussed in the physics lit
ture @11#. One of our goals is to present the FPT and
statistics in random media in a unified formalism.

The effect of bias on FPT in disordered systems has
ceived attention since the first works on the survival fract
of particles in media with randomly distributed perfe
tramps@12#. When the bias is switched on~through external
fields!, the system undergoes a substantial change in its
namics however small the field is. Several results have b
reported on survival probability~or related quantities! for
one-dimensional RW with disorder and bias. The models
disorder often regarded are the random traps and Sin
model. Trapping in one dimension is a model of strong d
order that allows exact results with large bias@13#. Sinai’s
model @14# is a time discrete RW in one dimension wit
asymmetrical transition probabilities that fulfill a certain co
dition. In this way, in Sinai’s model the disorder is couple
with the bias strength. The FPT problem for Sinai’s mod
has been extensively studied@15#. In this work we consider a
RW on a chain with site disorder in the presence of glo
~site independent! bias. We analyze weak and strong situ
tions of disorder@1,16#. For weak disorder all the invers
moments of the distribution of RW hopping rates are fini
whereas all these moments diverge if the disorder is stro

A successful theory for FPT statistics in disordered me
is the finite effective medium approximation~FEMA! @16#.
©2002 The American Physical Society12-1
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FEMA combines an exact expansion of the survival pro
ability equation in a disordered medium, with the effecti
medium approximation@17#. This scheme allows a perturba
tive analysis around the effective homogeneous medium
the long time limit for weak and strong disordered mode
FEMA also provides a self-consistent truncation criterio
The extension of FEMA to biased media was presented
Ref. @18#, where we got perturbative expansions for sm
bias and weak disorder. In Ref.@19#, another extension o
FEMA was carried out for periodically forced boundary co
ditions. In the present paper, we obtain, in the guidelines
the expansions developed in FEMA, the exact equations
MFPT and MRT and construct their solutions in the lead
relevant order for small bias. MRT for one-dimensional d
fusion in a constant field and biased chains was analyze
Ref. @10#. However, we could not find explicit expression
for the RT distribution in disordered media in the literatu
Therefore, another goal of our work is to consider the mix
effects of disorder and bias in the FPT and RT distributio

This paper presents the survival and residence times
tistics. In Sec. II we define the survival and residence pr
abilities and construct their expressions from the conditio
probability of the random walk on a chain. The random
ased model is described in Sec. III, whereas in Sec. IV
homogeneous~nondisordered! chain with bias is treated ana
lytically. In Sec. V we introduce the projection operator
average over disorder, obtaining the main equations.
weak disordered case is analyzed in Sec. VI and strong
ordered cases are considered in Sec. VII. Finally, in Sec.
thermally activated processes are considered and Sec
provides the concluding remarks. The mathematical det
of the paper are condensed in two appendixes. In Append
the survival and residence probabilities for homogene
chains are exactly calculated, in Appendix B we stu
Green’s functions in the presence of bias, and in Appendi
we evaluate the relevant cumulants used in Sec. VI and

II. SURVIVAL AND RESIDENCE TIMES STATISTICS

The dynamical behavior of random one-dimensional s
tems can be described by the one-step master equation@1#

] tP~n,tun0 ,t0!5wn21
1 P~n21,tun0 ,t0!

1wn11
2 P~n11,tun0 ,t0!

2~wn
11wn

2!P~n,tun0 ,t0!, ~2.1!

wherewn
1(2) is the transition probability per unit time from

site n to n11 (n21). P(n,tun0 ,t0) is the conditional prob-
ability of finding the walker at siten at time t, given that it
was at siten0 at time t0 (,t) and a particular configuration
of $wn

6%. We assume that$wn
6% is a set of positive indepen

dent identically distributed random variables. In this descr
tion, the disorder is modeled by the distribution,r(w), as-
signed to these random variables. For a given realizatio
$wn

6% ~quenched disorder! we get a Markovian stochasti
dynamics. We can write Eq.~2.1! in matrix notation:
] tP(tut0)5HP(tut0), where
02111
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Hn n85wn8
1 dn21 n81wn8

2 dn11n82~wn8
1

1wn8
1

!dn n8
~2.2!

and P(t0ut0)5I . Thus, the formal solution of Eq.~2.1! is
P(tut0)5exp@(t2t0)H#. This solution obeys the backwar
master equation too,] tP(tut0)5P(tut0)H, for the same initial
condition @20#.

In this work we consider a RW on a chain and we addr
the question about the survival and residence probabilitie
the finite intervalD5@2L,L#. The first is the probability,
Sn0

(tut0), of remaining inD ~without exiting! at timet if the

walker initially began at siten0PD. The second, instead, i
the probability,Rn0

(tut0), of finding the particle within the

domainD at timet, given that it initially began at siten0 ~not
necessary inD). Therefore, the residence probability is d
fined by

Rn0
~ tut0!5 (

nPD
P~n,tun0 ,t0!, ~2.3!

whereP(n,tun0 ,t0) is the solution of Eq.~2.1!. Due to the
fact that the master equation links the probabilities for
sites of the chain, the residence problem involves an infin
matrix.

To compute the survival probability, we need to elimina
contributions from trajectories returning to the intervalD
after having left it. To do it, we must find the solutio
PD(n,tun0 ,t0) of Eq. ~2.1! with absorbing boundaries in th
interval’s extremes@4#. Thus, PD(n,tun0 ,t0) results in the
solution of] tPD(tut0)5HDPD(tut0), where

~HD!n n85H Hn n8 if n8PD

0 otherwise.
~2.4!

Hence, the survival probability results in

Sn0
~ tut0!5 (

nPD
PD~n,tun0 ,t0!. ~2.5!

This definition and the fact that for the survival problem, w
only need to considern0PD allow us to work with a finite
square matrixHD of dimensionN3N, N52L11 being the
number of sites inD.

The presented view of the survival problem is adequ
for chains with a fixed number of sites. Nevertheless, we
interested in general expressions for domains with an a
trary numberN of sites and we want to work out survival an
residence problems simultaneously. Due to the tim
homogeneous invariance of the problems, we taket050
from here and throughout the rest of the work. We now co
sider the vector functionF(t) whose components ar
Fn0

(t)5(nPD P(n,tun0,0). The evolution equation for this
function follows from the backward master equation and
sults in] tF(t)5H†F(t), whereH† is the transpose matrix o
H. Using Eq.~2.2!, we can write the last equation in com
ponents,
2-2
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] tFn0
~ t !5wn0

1 @Fn011~ t !2Fn0
~ t !#

1wn0

2 @Fn021~ t !2Fn0
~ t !#. ~2.6!

Thus, the residence probability is the solution of Eq.~2.6!
with the initial condition,

Rn0
~ t50!5H 1 if n0PD

0 otherwise
~2.7!

and boundary condition at infinity:Rn0
(t)→0 for un0u→`

for all finite t. On the other hand, the survival probability
the solution of the generic adjoint equation~2.6! for the in-
finite chain with the initial conditionSn0

(t50)51 for all

n0PD. Here, theartificial boundary conditionSn0
(t)50 for

all t if n052(L11) or n05L11 must be used to preven
the back flow of the probability into the interval@21#.

The survival probability decreases monotonically in tim
from unity to zero. Let us now introduce the first-passa
time distribution~FPTD! f n0

(t), i.e., the probability density

of exit D at a time betweent and t1dt; then f n0
(t)5

2] tSn0
(t) @4#. The MFPT is the first momentTn0

~if it ex-
ists! of FPTD,

Tn0
5E

0

`

t f n0
~ t !dt. ~2.8!

If tSn0
(t)→0 for t→`, then

Tn0
5E

0

`

Sn0
~ t !dt. ~2.9!

The residence probability does not necessarily decreas
zero at infinitely long times. Moreover, it need not even
monotonic in time. Thus, the residence time density is g
erally not equal to the negative time derivative of the re
dence probability@11#. Nevertheless, we can define the MR
tn0

, in a manner analogous to Eq.~2.9!, namely,

tn0
5E

0

`

Rn0
~ t !dt. ~2.10!

Thus, from Eqs.~2.9! and~2.10!, we obtain MFPT and MRT
from the asymptotic limit of the Laplace transformed~de-
noted by hats! survival and residence probabilities@22#,

Tn0
5 lim

s→0
Ŝn0

~s!, ~2.11a!

tn0
5 lim

s→0
R̂n0

~s!. ~2.11b!

For MFPT, this limit exists ifŜn0
(s);Tn0

1csx, wherec and

Tn0
are assumed constants andx.0. In this manner, from

f̂ n0
(s)512sŜn0

(s), the normalization condition of the

FPTD is also guaranteed:*0
` f n0

(t)dt5 lim
s→0

f̂ n0
(s)51.
02111
e
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-
-

III. RANDOM BIASED MODEL

In this work, we are interested in the interplay betwe
the bias and the disorder in the transition probabilities. F
this goal we take

wn
15a1jn , wn

25b1jn , ~3.1!

wherea andb are positive constants and$jn% are taken to be
independent but identically distributed random variab
with ^jn&50. This form of jump transitions involves an o
dered biased background with a superimposed random
dium. The strength of the bias is given by the ratio betwe
a andb and the disorder is characterized by the distribut
of variables$jn%. Without lost of generality, we assumea
>b and in consequence we must to impose the restric
jn>2b. This restriction guarantees the positivity of jum
probabilities$wn

6%. We introduce the parametere for bias
strength byb/a512e and we take 0<e<1, so that the bias
field points to the right. This election of parameters allows
to focus our attention in the small bias limit and to study t
transition to the symmetric diffusive behavior@23#. The
Laplace transform of the evolution equation for our mod
results from Eq.~2.6!,

sF̂n~s!2Fn~ t50!5@K b1jnK 0#F̂n~s!, ~3.2!

where we have introduced the operators

K 0[E 11E 222I,

K b[a~E 12I!1b~E 22I!. ~3.3!

E 6 are shifting operators (E 6gn[gn61) andI is the identity
operator. Equation~3.2! must be solved with the boundar
conditions corresponding to each problem,

Ŝ2(L11)~s!5Ŝ(L11)~s!50, ~3.4a!

R̂n~s!→0 for unu→`, ~3.4b!

; s.0. The initial condition is given by

Fn~ t50!5H 1 if nPD

0 otherwise.
~3.5!

Remember that for FPT we only need to considernPD.
The classes of disorder analyzed are generalization

standard cases in the literature@1,16#. Our expressions are
constructed introducing the parametere in such a way that
we guarantee the positivity of transition rates and reprod
the known expressions in the limite→0. We have consid-
ered the following three classes of disorder for the trans
ratew5wn

1 .
~a! The mean values of the inverse moments of jump tr

sition w, bk[^(1/w)k&, are finite quantities for allk>1, e
.0 and remain finite in the limite→0.

~b! The probability distributionr(w) is

r~w!5H B if wP~ae,VB!

0 otherwise,
~3.6!
2-3
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where the values ofB andVB are fixed by the normalization
condition (*0

`r(w)dw51) and the fact that̂w&5a,

B5„2~12e!a…21, ~3.7a!

VB5~22e!a. ~3.7b!

~c! The probability distributionr(w) is

r~w!5H C w2a if wP~ae,VC!

0 otherwise,
~3.8!

where 0,a,1 and the values ofC andVC are also fixed by
the normalization condition and̂w&5a. For smalle it gives

C'
~12a!22a

@~22a!a#12a
@11~22a!a

„~12a!e…12a#,

~3.9a!

VC'
22a

12a
aF12S 12a

22a D 12a

e12aG . ~3.9b!

The expressions given in Eqs.~3.6! and~3.7! can be obtained
from the corresponding expressions given in Eqs.~3.8! and
~3.9! in the limit a→0. Class~a! corresponds to the situatio
of weak disorder. There, the mean-square displacemen
the RW behaves liket for long times. Classes~b! and ~c!
become strong disordered cases fore→0, and correspond to
situations of anomalous diffusion. For class~b!, b1
} ln(1/e) and bk}e12k if k.1. For class~c!, bk}e12k2a.
In the strong disorder limit,̂n(t)2& behaves for long times
ast/ ln t andt2(12a)/(22a), for cases~b! and~c!, respectively.
Though, the MFPT in the presence of strong disorder i
divergent quantity@16#. We will show in Sec. VII that our
model allows us to study the transition to strong disorde
the limit e going to zero, i.e., the zero bias limit.

IV. NONDISORDERED BIASED CHAIN

Thenondisorderedcase is obtained from the trivial distr
bution r(w)5d(w2a). Therefore, basic results about th
survival and residence probabilities in nondisordered cha
can be easily obtained from the equation:sF̂n(s)2Fn(0)
5K bF̂n(s), with the boundary conditions given by Eq.~3.4!.
In particular, exact expressions for MFPT and MRT for
homogeneous biased chain are given by~see Appendix A for
detailed calculations!

Tn5
L112n

a~12g!
2

2~L11!

a~12g!

gn2gL11

g2(L11)2gL11
, ~4.1!

with 2L<n<L, and

tn5
1

a 5
2L11

12g
, n,2L

L2n

12g
1

12gn1L11

~12g!2
, 2L<n<L

12g2L11

~12g!2
gn2L, n.L,

~4.2!
02111
of

a

n

s

where g5b/a,1. Figure 1 shows the behavior oftn for
some values ofg. We would like to stress that forn,2L,
MRT is a constant proportional to the width of the interv
(2L11), whereas forn→`, MRT vanishes. Given that the
bias points to the right, for any initial condition at the left o
the interval of interest, MRT is equal to the transit tim
across the interval. For a given initial condition, MRT
greater whereas the bias is smaller. For one way motiong
50), from Eq.~4.2! we obtain

tn5
1

a H 2L11, n,2L

L112n, nPD

0, n.L,

~4.3!

whereas in the small bias limit, i.e.,g512e, e!1, takinga
constant results in

tn5
2L11

ae H 1, n,2L

12
~L1n!~L1n11!

2~2L11!
e, nPD

12ne, n.L.

~4.4!

It is worthwhile to emphasize that MFPT exhibits a cros
over from the drift ~strong bias! regime @Tn5(L11
2n)/a)] to the diffusive ~small bias! regime „Tn}@(L
11)22n2#/2a…. The diffusive behavior is also present fo
MRT for nPD, but it is not in the leading term. Moreove
MFPT remains finite in the limite→0 for finite domains,
whereas MRT diverges as we can see from Eq.~4.4!. Thus,
the MRT is not a defined quantity for unbiased chains@24#.
Expressions for the MFPT in nondisordered biased cha
following from Eq. ~4.1!, and the study of the drift and dif
fusive regimes were reported in Ref.@18#.

FIG. 1. MRT for a nondisordered chain@as given by Eq.~4.2!#
plotted against the discrete initial conditionn, with a51 and L
510. The solid lines are only to guide the eye.
2-4
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V. PROJECTION OPERATOR AVERAGE

The basic equation for the evolution of probabilities h
been written in Eq.~3.2!. The operators in this equation ex
plicitly show the splitting of the transition probability in a
average biased part (^wn

1&5a,^wn
2&5b) and a random non

biased part (jn). Defining the operatorD5jnK 0, let us re-
write Eq. ~3.2! as

sF̂~s!2F~0!5@K b1D#F̂~s!. ~5.1!

Our goal in this section is to obtain exact equations for
averaged survival and residence probabilities. This aver
can be formally carried out introducing a projection opera
P (P 25P) that averages over the joint probability density
variables$jn%: ^F̂&[PF̂, F̂5^F̂&1(12P)F̂. Applying the
operatorP to Eq. ~5.1! we obtain

s^F̂&2F~0!5K b^F̂&1PD^F̂&1PD~12P!F̂. ~5.2!

Also, applying the operator (12P) to Eq. ~5.1! we arrive to

s~12P!F̂5K b~12P!F̂1~12P!D^F̂&

1~12P!D~12P!F̂. ~5.3!

A formal solution of Eq.~5.3! can be obtained using Green
function for the nondisordered chain,

Ĝ~s!5~s2K b!21. ~5.4!

Applying Ĝ to Eq.~5.3! and using the definition given in Eq
~5.4!, results in

~12P!F̂5Ĝ@~12P!D^F̂&1~12P!D~12P!F̂#.
~5.5!

Equation~5.5! can be iteratively solved for (12P)F̂,

~12P!F̂5 (
k51

`

@Ĝ~12P!D#k^F̂&. ~5.6!

Putting this formal solution in Eq.~5.2! we find a closed
exact equation for the average probability^F̂&,

s^F̂&2F~0!5K b^F̂&1K (
k50

`

@DĜ~12P!#kDL ^F̂&.

~5.7!

The operatorĜ is solution of the equation,

~s2K b!Ĝ51, ~5.8!

with the boundary conditions

Ĝ2(L11)m
S ~s!5Ĝ(L11)m

S ~s!50 ; s andmPD,
~5.9a!

Ĝnm
R ~s!→0 for unu→` andm finite, ~5.9b!
02111
s

e
ge
r

where the superscriptS ~R! corresponds to the survival~resi-
dence! problem. Exact expressions of Green’s functions
calculated in the Appendix B.

We will find it useful to write Eq.~5.7! in components.
For this task, we use the explicit form ofD, Terwiel’s cumu-
lants @25# of the random variablesjk : ^jnjm1

. . . jmp
&T

5 Pjn(1 2P)jm1
. . . (12P)jmp

, and we define the propa

gator: Jnm(s)5K 0Ĝnm(s), where the operatorK 0 acts on
the first index ofĜnm(s). Explicit expressions forJnm(s) are
given by Eqs.~B7! and~B12! in Appendix B. In this manner
we can write

s^F̂n&2Fn~0!5K b^F̂n&1 (
p50

`

(
m1 , . . . ,mp

3^jnjm1
. . . jmp

&TJnm1
~s!

3Jm1m2
~s! . . . Jmp21mp

~s!K 0^F̂mp
&.

~5.10!

We must understand thatm05n, and for the survival prob-
lem we have the additional restrictionm1 , . . . ,mpPD. The
exact effective backward equation given by Eq.~5.10! can be
rewritten as

s^F̂n&2Fn~0!

5K b^F̂n&1 (
p50

`

(
m1Þn

m2Þm1
A

mpÞmp21

^cncm1
. . . cmp

&TJnm1
~s!

3Jm1m2
~s! . . . Jmp21mp

~s!K 0^F̂mp
&, ~5.11!

where we have used the definition of Terwiel’s cumulan
Here, we have summed up all the terms containing the d
onal parts ofJnm(s) through the introduction of the random
operatorck(s) defined by

ck~s!5 (
i k50

`

@Jkk~s!jk~12P!# i kjk . ~5.12!

This operator acts on any disorder-dependent quantity a
right. The geometrical sum in Eq.~5.12! can be evaluated
resulting in

ck~s!5Mk~s!2
Mk~s!Jkk~s!

11^Mk~s!&Jkk~s!
PMk~s!, ~5.13!

where

Mk~s!5
jk

12jkJkk~s!
. ~5.14!

In the following, we take the limits→0 in order to obtain
from Eq. ~5.11! the corresponding equations for the MFP
and MRT in disordered media, which are defined from E
~2.11! by
2-5
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^Tn&5 lim
s→0

^Ŝn~s!&, ~5.15a!

^tn&5 lim
s→0

^R̂n~s!&. ~5.15b!

In this limit the propagatorJnm(s) can be written asLnm
1O(s), and the exact expression forLnm in the FPT~RT!
problem is given by Eq.~B14! @Eq. ~B15!# in Appendix B.
Therefore, the resulting equation for the averaged MF
(^Tn&) is

2Sn~ t50!5K b^Tn&1 (
p50

`

(
m1Þn

m2Þm1
A

mpÞmp21

^cncm1
. . . cmp

&T
S

3Lnm1

S Lm1m2

S . . . Lmp21mp

S K 0^Tmp
&. ~5.16!

Its solution must satisfy the boundary condition
^T2(L11)&5^TL11&50. A similar equation for the average
MRT (^tn&) is obtained from Eq.~5.16! replacing theS
quantities by the correspondingR quantities and imposing
the boundary conditions:̂tn&5const for n,2L and ^tn&
→0 for n→1` ~given that the bias field points to right!.

We, additionally, consider the case of small bias. Th
the expressions forLnm can be further expanded, and takin
a constant results in

Lnm
S '5

1

2 ~L11! a
@m2~L11!#e, n,m

2
1

a
1

1

2 ~L11! a
@m2~L11!#e, n5m

1

2 ~L11! a
@m1~L11!#e, n.m,

~5.17a!

Lnm
R '

1

a H 0, n,m

21, n5m

e, n.m.

~5.17b!

Again, the superscriptS ~R! corresponds to the surviva
~residence! problem. Hence,Lnm}e for nÞm and, from Eq.
~B15!, the diagonal components of the propagator in the r
dence problem result independent ofe.

VI. WEAK DISORDER

For a disorder of class~a!, the quantitiesbk are finite
and we obtain that ^cncm1

. . . cmp
&T

S}e0 and

^cncm1
. . . cmp

&T
R is independent ofe. Thus, Eq.~5.16! is a

perturbative expansion in the sense that^Tn& can be calcu-
lated up to ordereq truncating thep series in theq term (p
50, . . . ,q). The corresponding equation for^tn& is strictly a
perturbative expansion given that the contribution to the
der eq comes entirely from the termp5q.

In Eq. ~5.16!, the cumulant forp51 consists of two in-
02111
P

:

,

i-

r-

dependent random operators, so it vanishes~see Appendix
C!. Therefore, it turns out that only the term withp50 con-
tributes to ordere. From Eq.~C14! results

^cn&T
S5b1

212a2aF L112n

2 ~L11!
e, ~6.1!

where we have introduced the fluctuation of the quenc
disorder:F5(b22b1)/b1

2. Up to ordere, takinga constant
and usingK b'a@K 02(E 22I)e#, the explicit form of Eq.
~5.16! is

215b1
21K 0^Tn&2aFF L112n

2~L11!
K 01~E 22I!Ge ^Tn&

1O~e2!. ~6.2!

For e50, Eq. ~6.2! immediately gives the well-known
MFPT for the unbiased case:̂ Tn(e50)&5@(L11)2

2n2#/(2b1
21), where we can see that the effect of we

disorder is to replace the constanta by the effective coeffi-
cient b1

21. To construct the consistent solution up to ordee
of Eq. ~6.2!, we propose the expression

^Tn&5
~L11!22n2

2b1
21 @11~An1B!e#, ~6.3!

which immediately satisfies the boundary condition
^T2(L11)&5^TL11&50. To fit the constantsA andB we sub-
stitute this expression in Eq.~6.2! and retain only the terms
up to ordere. If the factor ofe in the expression~6.3! were
a polynomial of degree greater than 1, we can easily see
the coefficients of the terms of degree greater than 1 van
Thus, we obtain fornPD

^Tn&'
~L11!22n2

2b1
21 F11S 322n

6
1

L112n/3

2~L11!
FDab1eG .

~6.4!

From this expression we can analyze the interplay betw
the bias and the fluctuation of the quenched disorderF. In
the presence of bias, the escape time from the finite inte
increases for all initial conditionsn, with respect to the un-
biased case, if the fluctuation is large enough. This is
important result related to the control of the trapping proce
This fact was reported in Ref.@18# where the solution of Eq.
~6.2! was constructed from FEMA. Now, we can evaluate t
difference between the exact solution~ordere) given by Eq.
~6.4! and that approximation, obtaining that the correction
FEMA is @(L11)22n2#/@6(L11)#nFae.

In the residence problem, from Eqs.~C9! and ~C14! re-
sults ^cn&T

R5b1
212a. Thus, the corresponding equation f

the averaged MRT is

2Rn~0!5b1
21K 0^tn&2ae~E 22I!^tn&1O~e2!,

~6.5!

whereRn(0) is given by Eq.~3.5!. Now we have to deal with
a backward master equation with constant coefficients
2-6
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this case,the fluctuations of disorder are not present. For-
mally, this equation is equal to the one corresponding t
nondisordered chain in the small limit bias. Therefore, fro
Eq. ~4.4!, with the substitutions

a→b1
21 ,

b→b1
21~12ab1e!,

e→ab1e, ~6.6!

we obtain, up to ordere, the solution

tn'
2L11

ae H 1, n,2L

12
~L1n!~L1n11!

2~2L11!
ab1e, nPD

12nab1e, n.L.
~6.7!

VII. STRONG DISORDER

For the classes of strong disorder,bk are divergent quan
tities in the limit e→0,

b1'u ln eu/~2a!

, for class~b!,

bk'
~ae!12k

2a~k21!
~k.1! ~7.1a!

bk'
C

k211a
~ae!12k2a, for class~c!, ~7.1b!

where 0,a,1 and C is given in Eq.~3.9b!. Also in this
limit, Terwiel’s cumulants diverge except the first on
^cn&T , which vanishes. However, all the terms of thep se-
ries in the Eq.~5.16! vanish and the one corresponding
p50 is the leading term. We reckon the relevant cumula
in Appendix C.

For a disorder of class~b! we obtainF'2/@e ln2 e#, and
from Eq. ~6.1! results^cn&T

S'b1
21 . Therefore, the leading

terms in the equation for the averaged MFPT result in

215b1
21K 0^Tn&1OS e

u ln eu D . ~7.2!

This is a backward master equation for the unbiased ch
with constant coefficients whose solution is given by^Tn&
5@(L11)22n2#/(2b1

21). Hence, the averaged MFPT d
verges asb1}u ln eu.

On the other hand, for a disorder of class~c! we obtain
F'1/C@a2/(11a)#(ae)a21, and from Eq. ~6.1! results
^cn&T

S'b1
21

„12a/(11a)(L112n)/@2(L11)#…. There-
fore, the MFPT’s equation is

215S 12
a

11a

L112n

2~L11! Db1
21K 0^Tn&1O~e!. ~7.3!
02111
a

ts

in

In this case, we get an unbiased backward master equa
with linear coefficients. General solutions of this equati
will be given elsewhere. Nevertheless, we hold our attent
in the divergent behavior of the averaged MFPT fore→0.
From Eq.~7.3! we can see that̂Tn&}b1}e2a.

FEMA @18# consists in introducing an effective nonhom
geneous mediumGn and truncating Eq.~5.16! to the first
term: 215K b^Tn&. Here, the operatorK b is constructed
with the constantsa1Gn andb1Gn . The effective rate,Gn ,
is fixed imposing the condition̂cn(Gn)&T

S50. The resulting
solutions give the exact laws:^Tn&}u ln eu for a disorder of
class~b! and ^Tn&}e2a for a disorder of class~c!, however
in the last case the predictedn-dependent coefficient is no
exact. Strikingly, the predicted divergence laws for the av
aged MFPT in biased chains agree with the correspond
laws for the survival probability, obtained for the unbias
case in the limits→0 @16#. The behavior of the surviva
probability obtained from FEMA iŝŜn(s)&}u ln su for a dis-
order of class~b!, and ^Ŝn(s)&}s2a for a disorder of class
~c!. Accordingly, both problems have the same expone
despite their different natures.

In the residence problem, for both classes of strong dis
der we get that̂ cn&T

R'b1
21 , and then the equation for th

averaged MRT results2Rn(0)5b1
21K 0^tn&, i.e., an unbi-

ased equation. Therefore, the averaged MRT is not a defi
quantity for strong disorder.

VIII. THERMALLY ACTIVATED PROCESSES

Before concluding this work, we want to analyze th
physical realization corresponding to thermally activat
processes in weakly disordered chains. For this goal we s
pose a particle that moves in a periodic potentialU with
minima separated by sharp maxima of heightf. The jump
probability per unit time to neighbor sites involves th
Arrhenius factor:W exp(2bf) with b5(kBT)21, wherekB
is Boltzmann’s constant andT is the temperature. In the pres
ence of disorder, the transition probabilities are s
symmetrical but depend on the site@see Fig. 2#: wn
5Wexp@2b(f2fn)#, where^fn&50, ufnu!f, and we sup-
pose that the random potential is smaller than the ther
energy, i.e.,bufnu!1. Now, suppose that an external fieldE

FIG. 2. Disordered potential in the chain.d is the distance be-
tween nearest-neighbor sites. The particle jumps to neighbo
sites through potential barriers equal tof2fn , wherefn are in-
dependent identically distributed random variables with zero me
2-7
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~toward right! is added, then the forceqE is applied on the
particle of ‘‘charge’’q. The presence ofE alters the heights
of potential barriers. The new jump probabilities are no
symmetric,

wn
65W exp@2b~f2fn7qEd/2!#, ~8.1!

whered is the separation between neighbor sites. In the
field limit, we can use the aproximation exp@2b(2fn
7qEd/2)#'11bfn6bqEd/2, thus@see Eq.~3.1!#,

a5W exp~2bf!~11bqEd/2!, ~8.2a!

b5W exp~2bf!~12bqEd/2!, ~8.2b!

jn5W exp~2bf!bfn . ~8.2c!

Hence,g5b/a'12bqEd, i.e., e5bqEd.
Defining a05W exp(2bf), we can write a5a0(1

1e/2), b5a0(12e/2), and jn5a0bfn . Therefore, we
must adapt the equations of Sec. VI to incorporate the lin
dependence ofa on e. In the following, it will be useful to
define the quantitiesw̄5a01jn , bk5^w̄2k&, and F̄
5b2/b1

221, which are independent ofe. From Eqs.~B14!
and Eqs.~B15! results that Eqs.~5.17! are valid with the
substitution a→a0. Additionally, we can see that̂cn&T

5b̄1
212a02a0F̄une, whereun is given by Eq.~C9!. Now,

using thatK b'a0@K 02(E 12E 2)e/2#, the explicit form of
the MFPT’s equation up to ordere is

215b̄1
21K 0^Tn&2a0F F̄unK 01

1

2
~E 12E 2!Ge^Tn&.

~8.3!

Proposing the solution given by Eq.~6.3!, we now obtain

^Tn&'
~L11!22n2

2b̄1
21 F11S 2

n

3
1

L112n/3

2~L11!
F̄Da0b̄1eG .

~8.4!

In order to obtain the explicit dependence on temperat
we additionally must replace the disorder-dependent qua
ties according tob̄1'(11b2^fn

2&)/a0 and F̄'b2^fn
2&.

On the other hand, the MRT’s equation up to ordere
results

2Rn~0!5b̄1
21K 0^tn&1

a0

2
e~E 12E 2!^tn&. ~8.5!

Again, this equation is equal to that corresponding to a n
disordered chain for small bias with transition rates given
the substitutions

a→b̄1
211

a0

2
e,

b→b̄1
212

a0

2
e,
02111
-

w

al

e,
ti-

-
y

e→a0b̄1e. ~8.6!

Thus, up to ordere, MRT is equal to the expression given b
Eq. ~6.7! with the changesa→a0 andb1→b̄1.

IX. CONCLUSIONS

We have presented a unified framework for the FPT a
RT statistics in finite disordered chains with bias. Exa
equations for the quantities averaged over disorder were
tained for both problems and its solutions up to first order
the bias parameter were constructed retaining the full dep
dence on the system’s size and the initial condition.

We have studied the FPT and RT problems for three m
els of disorder. For weak disorder, the inverse moments
the transition probabilities are finite, and we get that the b
becomes a control parameter for the MFPT, coupled with
fluctuation of the disorder. The MRT is only defined in th
presence of bias, and for weak disorder the MRT’s expr
sions are obtained from the nondisordered case renorm
ing the transition constants. For strong disordered cases
which the MFPT is not defined in unbiased chains, the b
allows us to study the divergent behavior. Amazingly, t
exponents of the divergences in MFPT obtained for vani
ing bias coincide with that obtained for the averaged survi
probability in the long time regime. The MRT is a diverge
quantity under strong disorder because the strength pa
eter is not present in the corresponding equation in the sm
bias limit, and the MRT is not defined for unbiased walks

We complete the work with three appendixes. In Appe
dix A the derivation of survival and residence probabiliti
for nondisordered chains is completely developed. Appp
dix B is devoted to the detailed calculation of Green’s fun
tion in a chain with bias. Exact expressions are given, wh
display the full dependence on the system’s size, initial c
dition, and bias strength. The evaluation of the relevant T
wiel’s cumulants is reported in Appendix C.
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APPENDIX A: SURVIVAL AND RESIDENCE
PROBABILITIES IN A NONDISORDERED

BIASED CHAIN

We address the question about the survival and reside
probabilities for a RW in the finite intervalD̄5@2M ,L# of a
homogeneous chain. In the absence of disorder, the Lap
transform of the evolution equation givessF̂n(s)2Fn(0)
5K bF̂n(s). This equation can be written as

@aE 11bE 22~s1a1b!I#F̂n~s!52Fn~0!, ~A1!

and must be solved with the boundary conditions cor
sponding to each problem,
2-8
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Ŝ2(M11)~s!5Ŝ(L11)~s!50, ~A2a!

R̂n~s!→0 for unu→`, ~A2b!

; s.0. Defining the vectorA such thatAn11[F̂n(s), Eq.
~A1! can be written as

@a~E 1!22~s1a1b!E 11bI#An52Fn~0!. ~A3!

Equation~A3! is a second-order linear difference equation
particular solution for the inhomogeneous equation is
constantAn51/s. ProposingAn5xn as a solution of the cor
responding homogeneous equation, it givesx22(r 11
1g)x1g50, wherer 5s/a and g5b/a,1. The roots of
this second-order equation are given by
02111
e

x1,25
1
2 @r 111g6A~r 111g!224g# ~A4!

and satisfyx1x25g with x1>1. Then, the general solutio
of Eq. ~A1! can be written as

F̂n~s!5
1

s
1c1x1

n1c2x2
n , nPD̄. ~A5!

For the survival problem the constantsc1 andc2 are fixed by
imposing the boundary conditions given by Eq.~A2a!. Thus,
we found for the survival probability the following expres
sion:
Ŝn~s!5
1

s S 12
~x1

L1M122gL1M12!x1
n2L211~gL1M122x2

L1M12!x2
n2L21

x1
L1M122x2

L1M12 D . ~A6!

This equation is invariant under the transformationx1↔x2. From Eq.~A6! and f̂ n(s)512sŜn(s), we can immediately obtain
the FPTD for the ordered chain.

For the residence problem, the boundary conditions~A2b! impose that

R̂n~s!5H d1x1
n for n,2M

d2x2
n for n.L.

~A7!

Now, the constantsc1 , c2 , d1, andd2 are fixed by writing explicitly Eq.~A1! for the sitesn52(M11), 2M , L, andL
11. Thus, we finally found the expression for the residence probability,

R̂n~s!5
1

s~x12x2! H ~12x2!~x1
L1M1121!x1

n2L, n,2M

12@~12x2!x1
n2L1~x121!x2

M111n#, 2M<n<L

~x121!~12x2
L1M11!x2

n2L, n.L.

~A8!
q.
ten

ns

d-
Taking the limits of Eq.~2.11! it gives, on one hand the
MFPT for the ordered chain,

Tn5
L112n

a~12g!
2

L1M12

a~12g!

gn2gL11

g2(M11)2gL11
, ~A9!

with 2M<n<L, and on the other hand the MRT,

tn5
1

a 5
L1M11

12g
, n,2M

L2n

12g
1

12gn1M11

~12g!2
, 2M<n<L

12gL1M11

~12g!2
gn2L, n.L.

~A10!

Equations~4.1! and ~4.2! follow from Eqs.~A9! and ~A10!,
respectively, takingM5L.
APPENDIX B: GREEN’S FUNCTION IN A CHAIN
WITH BIAS

In this section we are concerned with the solution of E
~5.8!. In components, this backward equation can be writ
as

aĜn11m~s!1bĜn21m~s!2~s1a1b!Ĝnm~s!52dnm .

~B1!

We must solve this equation with the boundary conditio
corresponding to each problem,

Ĝ2(M11)m
S ~s!5Ĝ(L11)m

S ~s!50 ; s and mPD̄,

~B2a!

Ĝnm
R ~s!→0 for unu→` and m finite. ~B2b!

Here, the superscriptS ~R! denotes the solution correspon
ing to the survival~residence! problem.
2-9
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The solution of Eq.~B1! in a finite domain~survival prob-
lem! can be constructed using the method of images@2#. It
consists in summing to Green’s function in the absence
boundaries, terms corresponding to the specular image o
indexn with respect to the boundary considered. For abso
ing boundaries the image must have a negative sign. M
over, in the presence of bias, the image must change the
direction (a↔b). Additionally, in a closed domain, eac
boundary reflects the image of the other boundary. This
introduces an infinite set of images. However, we adopt h
the simpler algebraic approach developed in Appendix
Thus, we propose
io

02111
f
he
-

e-
ias

ct
re
.

Ĝnm
S ~s!5H g1x1

n1g2x2
n for n<m

with n,mPD̄,

d1 x1
n1d2 x2

n for n>m
~B3!

where the functionsx1,2 are defined in Eq.~A4!. The con-
stantsg1 , g2 , d1, and d2 are solutions of the set of fou
algebraic equations that result from imposing the bound
conditions given by Eq.~B2a!, imposing the equality be-
tween both expressions given by Eq.~B3! for n5m, and
writing Eq. ~B1! for n5m. Additionally, using the relation
a x1,2

2 2(s1a1b) x1,21b50, we obtain
Ĝnm
S ~s!5

1

D H x1
n1M11~x1

2m1L112x2
2m1L11!1x2

n1M11~x2
2m1L112x1

2m1L11!, n<m

x1
n x2

L11~x1
2mx2

M112x2
2mx1

M11!1x2
n x1

L11~x2
2mx1

M112x1
2mx2

M11!, n>m,
~B4!
as
where D5a (x12x2)(x1
L1M122x2

L1M12). Defining the
variable z5s1a1b22 m, the constantm5Aab, and the
functions

A~z!511
z

2m
2S z

m
1

z2

4m2D 1/2

, ~B5a!

B~z!5
1

2m S z

m
1

z2

4m2D 21/2

, ~B5b!

result in x25AgA(z) and a(x12x2)5B(z)21. Using these
functions we can recast the expression~B4!, for the caseM
5L, as

Ĝnm
S ~s!5g (n2m)/2B~z!@12A~z!4(L11)#21

3@A~z! un2mu2A~z!2(L11)

3$A~z!n1m1A~z!2(n1m)%

1A~z!4(L11)A~z!2un2mu#. ~B6!

The last expression satisfies the symmetry relat
(a,b),(n,m)↔(b,a),(m,n). Denoting by Ĝnm

S (s) Green’s

n

function corresponding to the survival problem without bi
~and taking m5Aab) @16#, we can immediately see
that Ĝnm

S (s)5g (n2m)/2Ĝnm
S (z). Moreover, given that (z

2mK 0)ĜS(z)51, we immediately obtain Eq.~B1!.
We now compute the propagatorJnm(s)5K 0Ĝnm(s). Ap-

plying the operatorK 0 defined in Eq.~3.3! to Eq. ~B6!, the
following expression is found:

Jnm
S ~s!5B~z!@12A~z!4(L11)#21

3F2A~z!2(L11)H S Ag

A~z!
D n

@AgA~z!#2m

3S Ag

A~z!
1

A~z!

Ag
22D 1„AgA~z!…nS A~z!

Ag
D m

3S AgA~z!1
1

AgA~z!
22D J 1ZnmG , ~B7!

wheren,mPD and
Znm55
S Ag

A~z!
D n2m21S Ag

A~z!
21D 2

1A~z!4(L11)
„Ag A~z!…n2m21~Ag A~z!21!2, n,m

AgA~z!1
A~z!

Ag
221A~z!4(L11)S Ag

A~z!
1

1

AgA~z!
22D , n5m

„Ag A~z!…n2m21
„AgA~z!21…21A~z!4(L11)S Ag

A~z!
D n2m21S Ag

A~z!
21D 2

, n.m.

~B8!
2-10
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On the other hand, for the residence problem we prop

Ĝnm
R ~s!5H l1x1

n for n<m

with n,mPD̄.

l2x2
n for n>m

~B9!

This expression immediately satisfies the homogeneous
of Eq. ~B1! and the boundary conditions~B2b!, given that
x1 x25g,1 with x1>1. The constantsl1 andl2 are fixed
by imposing forn5m, the equality between both expre
sions in Eq.~B9!, and writting Eq.~B1! for n5m. Hence, we
obtain

Ĝnm
R ~s!5

1

a~x12x2! H gn2mx2
m2n for n<m

x2
n2m for n>m.

~B10!

Using the functions defined by Eq.~B5!, the last expression
can be recast as

Ĝnm
R ~s!5g~n2m!/2B~z!A~z! un2mu. ~B11!

Applying the operatorK 0 to Eq. ~B11! we find

Jnm
R ~s!5g~n2m!/2B~z!A~z! un2mu

3H g1/2A~z!211g21/2A~z!22, n,m

g1/2A~z!1g21/2A~z!22, n5m

g1/2A~z!1g21/2A~z!2122, n.m.

~B12!

We are interested in analyzing the propagatorJnm(s) in
the limit s→0 for a given bias, also we are concerned w
the expansion for small bias (e→0). We must stress tha
these limits do not commute. Thus, we first must take
limit s→0 for a fixed bias, and then perform the expans
in the parametere. Defining the variabley5s/(a2b), we
get from Eq.~B5!, for smalls, that

A~z!'AgS 12y1
1

12g
y2D , ~B13a!

B~z!'
1

a~12g! S 12
11g

12g
y1

~11g!212g

~12g!2
y2D .

~B13b!

These approximations allow us to write the propagator in
form: Jnm(s)'Lnm1O(y), where for the survival problem

Lnm
S 5

1

a~12g!
~12g2(L11)!21

3H ~12g2!~2gn1L1gn2m12L11!, n,m

2~12g2!gn1L1~12g!~g2L1121!, n5m

~12g2!~2gn1L1gn2m21!, n.m,

~B14!

and, on the other hand, for the residence problem
02111
se

se

e
n

e

Lnm
R 5

1

a H 0, n,m

21, n5m

~12g!gn2m21, n.m.

~B15!

We remark that we keep the exact dependence in the pa
eter L ~size of the system! for the FPT problem. From Eq
~B14!, we can also see that thes-independent contribution is
quite different from that which is obtained without bias@16#.
In the presence of bias we get nondiagonal contributions
the propagator for the survival and residence problems in
limit s→0, which also remain for small bias, as has be
shown in Eq.~5.17!.

APPENDIX C: TERWIEL’S CUMULANTS

Terwiel’s cumulants were introduced in Ref.@25#. In this
Appendix we are concerned with the evaluation of the cum
lants of the random operatorcn defined by

cn5Mn~12NnPMn!, ~C1!

where

Mn5
jn

12jnJnn
~C2!

is a random variable, and

Nn5
Jnn

12^Mn&Jnn
. ~C3!

From its definition,

^cncm1
. . . cmp

&T5Pcn~12P!cm1
. . . ~12P!cmp

~C4!

can be easily obtained

^cn&T5^cn&,

^cncm&T5^cncm&2^cn&^cm&,

^cncm1
cm2

&T5^cncm1
cm2

&2^cn&^cm1
cm2

&

2^cncm1
&^cm2

&1^cn&^cm1
&^cm2

&.

~C5!

For nÞm, cn and cm are statistically independent, the
^cncm&5^cn&^cm&. Therefore,

^cncm&T50,

^cncmcn8&T50 ~nÞn8!,

^cncmcn&T5^cncmcn&1^cn&^cm&^cn&, ~C6!

and using Eqs.~C1!–~C3! results in

^cn&5
^Mn&

11^Mn&Jnn
,

2-11



PEDRO A. PURY AND MANUEL O. CÁCERES PHYSICAL REVIEW E66, 021112 ~2002!
^cncmcn&T5~11^Mn&Jnn!
22

3~^Mn
2&^Mm&2Nm^Mn&

2^Mm&2!. ~C7!

In the limit s→0, from Eq. ~5.17! the diagonal compo-
nents of the propagatorJnn can be written as

Jnn'2
1

a
~11une!, ~C8!

where

un5H L112n

2~L11!
, FPT problem

0, RT problem.

~C9!

Using the transfer ratev5a1jn , we obtain

~12jnJnn!
21'

a

v F12S 12
a

v D uneG . ~C10!

Thus, we can write

Mn'aS 12
a

v D F12S 12
a

v D uneG . ~C11!

For a disorder of class~a! for which the quantitiesbk are
finite, results in

K S 12
a

v D L 512ab1 ,

K S 12
a

v D 2L 5122ab11a2b2 . ~C12!

Hence,
ac

d
.,

m

02111
^Mn&'a@12ab12~122ab11a2b2!une#,

11^Mn&Jnn'ab1F12S 12a
b2

b1
D uneG ,

Nn'2
1

a2
b1

21F11S 22a
b2

b1
D uneG ~C13!

and therefore

^cn&5b1
212a2aFune,

^cncmcn&T5b1
22@a~12ab1!~122ab11a2b2!

1b1
21~12ab1!4#1O~e!, ~C14!

for nÞm. Here, we have used thatF5(b2 /b1
2)21.

For the strong classes of disorder, the quantitiesbk di-
verge in the limit e→0 and it can be seen that̂(1
2a/v)k&}bk . In particular, for a disorder of class~b! b1
}u ln eu and bk}e12k for (k.1). Thus, from Eq.~C11! we
obtain ^Mn&}u ln eu and ^Mn

2&}e21, which give

^cn&'b1
21}

1

u ln eu
,

^cncmcn&T}
1

eu ln eu
. ~C15!

Finally, for a disorder of class~c!, bk}e12k2a and results in
^Mn&}e2a and ^Mn

2&}e212a. Therefore,

^cn&}b1
21}ea,

^cncmcn&T}e21. ~C16!
in.
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